Andreas Jechow
Müggelseedamm 310, 12587 Berlin
Profil
Light pollution, Ecological light pollution
Remote Sensing, Imaging
Physics, Optics, Lasers, Spectroscopy, Quantum Optics, Atomic Physics
Light sources, Light propagation, Light matter interaction, Light detection
since 09/2023 Guest scientist IGB
2015 - 2023 PostDoc IGB, Light Pollution, Remote Sensing
2015 - 2021 Guest Scientist, GFZ Potsdam, Remote Sensing
2013 - 2018 Guest Lecturer, University of Applied Sciences, Brandenburg
2012 - 2014 PostDoc, Photonics, University of Potsdam
2010 - 2012 PostDoc, Centre for Quantum Dynamics, Griffith University, Brisbane, Australia
2009 PhD (Dr.rer.nat.), Experimental Physics, Photonics, University of Potsdam
2006 Master (M.Eng.), Photonics, University of Applied Sciences, Brandenburg
2004 Diploma (FH), Engineering Physics, University of Applied Sciences, Brandenburg
Auszeichnungen und Preise
2014 Early Career Researcher Award Berlin/Brandenburg in „Nanomicroscopy“ by Leibniz Kolleg Potsdam
2010 Griffith University Postdoctoral Fellowship (>150,000 AUD)
2009 Runner-up, Photonics 21 European Student Innovation Award
2006 Best Master Student University of Applied Sciences, Brandenburg
Publikationen
Projekte
full list of publications
Key publications
Light pollution
C.C.M. Kyba, T. Kuester, A. Sánchez de Miguel, K. Baugh, A. Jechow, F. Hölker, J. Bennie, C.D. Elvidge, K.J. Gastan and L. Guanter, "Artificially lit surface of Earth at night increasing in radiance and extent," Science Advances 3, e1701528 (2017)
A. Jechow, Z. Kolláth, S.J. Ribas, H. Spoelstra, F. Hölker and C.C.M. Kyba, "Imaging and mapping the impact of clouds on skyglow with all-sky photometry," Scientific Reports 7, 6741 (2017)
Quantum bio-photonics
A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer and R. Menzel, "Enhanced two-photon excited fluorescence from imaging agents by utilizing thermal light," Nature Photonics 7, 973 (2013)
A. Jechow, A. Heuer, and R. Menzel, "High brightness, tunable biphoton source at 976 nm for quantum spectroscopy," Optics Express 16, 13439-13449 (2008)
Quantum optics
A. Jechow, B.G. Norton, S. Händel, V. Blūms, E.W. Streed, D. Kielpinski, "Controllable optical phase shift over one radian from a single isolated atom," Physical Review Letters 110, 113605 (2013)
E.W. Streed, A. Jechow, B.G. Norton, and D. Kielpinski, "Absorption imaging of a single atom," Nature Communications 3, 933 (2012)
Laser light sources
A. Jechow, R. Menzel, K. Paschke and G. Erbert, "Blue-green light generation using high brilliance edge emitting diode lasers," Laser and Photonics Reviews 4, 633-655 (2010)
A. Jechow, M. Lichtner, R. Menzel, M. Radziunas, D. Skoczowsky, A. G. Vladimirov, "Stripe-array diode-laser in an off-axis external cavity: Theory and experiment," Optics Express 17, 19599-19604 (2009)
A. Jechow, V. Raab and R. Menzel, "High cw power using an external cavity for spectral beam combining of diode laser-bar emission," Applied Optics 45, 3545 – 3547 (2006)
Book chapter
1. B. G. Norton, E. W. Streed, A. Jechow, S. Händel, V. Blūms, D. Kielpinski, "High-resolution fluorescence and absorption imaging of single trapped ions," in Ion Traps for Tommorrow’s Application, M. Knoop, I. Marzoli, G. Morigi, eds. (IOS press 2015)
Peer reviewed
63. Levy, O., Ayalon, I., Avisar, D. & Jechow, A. Corals Metabolic Signatures Alters Under Artificial Light at Night (Alan). Science of the Total Environment (2024).
62. Vega, C. P., Jechow, A., Campbell, J. A., Zielinska-Dabkowska, K. M. & Hölker, F. Light pollution from illuminated bridges as a potential barrier for migrating fish–Linking measurements with a proposal for a conceptual model. Basic and Applied Ecology 74, 1–12 (2024).
61. Lyche Solheim, A. et al. Lake browning counteracts cyanobacteria responses to nutrients: Evidence from phytoplankton dynamics in large enclosure experiments and comprehensive observational data. Global Change Biology e17013 (2024).
60. Hölker, F., Jechow, A., Schroer, S., Tockner, K. & Gessner, M. O. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philosophical Transactions of the Royal Society B 378, 20220360 (2023).
59. Evens, R. et al. Skyglow relieves a crepuscular bird from visual constraints on being active. Science of the Total Environment 900, 165760 (2023).
58. Kolláth, Z. & Jechow, A. Natural variation of the colour and spectrum of the night sky observed at a potential european reference site for dark skies. Journal of Quantitative Spectroscopy and Radiative Transfer 108592 (2023).
57. Kyba, C. C. et al. Multiple angle observations would benefit visible band remote sensing using night lights. Journal of Geophysical Research: Atmospheres 127, e2021JD036382 (2022).
56. Storms, M. et al. The rising moon promotes mate finding in moths. Communications Biology 5, 393 (2022).
55. Aulsebrook, A. E. et al. Nocturnal lighting in animal research should be replicable and reflect relevant ecological conditions. Biology Letters 18, 20220035 (2022).
54. Jechow, A. Is Heralded Two-Photon Excited Fluorescence with Single Absorbers Possible with Current Technology? Photonics 9, 52 (2022).
53. Pérez Vega, C., Zielinska-Dabkowska, K. M., Schroer, S., Jechow, A. & Hölker, F. A systematic review for establishing relevant environmental parameters for urban lighting: Translating research into practice. Sustainability 14, 1107 (2022).
52. Aichner, B. et al. Spatial and seasonal patterns of water isotopes in northeastern German lakes. Earth System Science Data Discussions 2021, 1–24 (2021).
51. Schroer, S. et al. Towards Insect-Friendly Road Lighting—A Transdisciplinary Multi-Stakeholder Approach Involving Citizen Scientists. Insects 12, 1117 (2021).
50. Holker, F. et al. 11 pressing research questions on how light pollution affects biodiversity. Frontiers in Ecololy and Evolution 767177 (2021).
49. Jechow, A. et al. Design and implementation of an illumination system to mimic skyglow at ecosystem level in a large-scale lake enclosure facility. Scientific Reports11, 23478 (2021).
48. Kühne, J. L., van Grunsven, R. H., Jechow, A. & Hölker, F. Impact of different wavelengths of artificial light at night on phototaxis in aquatic insects. Integrative and Comparative Biology 61, 1182–1190 (2021).
47. Ogashawara, I. et al. The use of Sentinel-2 for chlorophyll-a spatial dynamics assessment: A comparative study on different lakes in northern Germany. Remote Sensing13, 1542 (2021).
46. Kalinkat, G. et al. Assessing long-term effects of artificial light at night on insects: what is missing and how to get there. Insect Conservation and Diversity 14, 260–270 (2021).
45. Jechow, A. & Hölker, F. Evidence that reduced air and road traffic decreased artificial night-time skyglow during COVID-19 lockdown in Berlin, Germany. Remote Sensing 12, 3412 (2020).
44. Longcore, T. et al. Commentary: Brightness of the night sky affects loggerhead (Caretta caretta) sea turtle hatchling misorientation but not nest site selection. Frontiers in Marine Science 7, 706 (2020).
43. Ogashawara, I. et al. Performance of the Landsat 8 provisional aquatic reflectance product for inland waters. Remote Sensing 12, 2410 (2020).
42. Kolláth, Z. et al. Introducing the dark sky unit for multi-spectral measurement of the night sky quality with commercial digital cameras. Journal of Quantitative Spectroscopy and Radiative Transfer 253, 107162 (2020).
41. Jechow, A., Kyba, C. C. & Hölker, F. Mapping the brightness and color of urban to rural skyglow with all-sky photometry. Journal of Quantitative Spectroscopy and Radiative Transfer 250, 106988 (2020).
40. Kyba, C. C. et al. Night matters—why the interdisciplinary field of “Night Studies” is needed. J3, 1–6 (2020).
39. Levin, N. et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sensing of Environment 237, 111443 (2020).
38. Grubisic, M. et al. Light pollution, circadian photoreception, and melatonin in vertebrates. Sustainability11, 6400 (2019).
37. Jechow, A. & Hölker, F. How dark is a river? Artificial light at night in aquatic systems and the need for comprehensive night-time light measurements. Wiley Interdisciplinary Reviews: Water 6, e1388 (2019).
36. Jechow, A. & Hölker, F. Snowglow—the amplification of skyglow by snow and clouds can exceed full moon illuminance in suburban areas. Journal of Imaging 5, 69 (2019).
35. Jechow, A., Kyba, C. C. & Hölker, F. Beyond all-sky: assessing ecological light pollution using multi-spectral full-sphere fisheye lens imaging. Journal of Imaging 5, 46 (2019).
34. Jechow, A., Hölker, F. & Kyba, C. C. Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. Scientific reports9, 1391 (2019).
33. Jechow, A. Observing the impact of WWF earth hour on urban light pollution: A case study in Berlin 2018 using differential photometry. Sustainability 11, 750 (2019).
32. Kurvers, R. H. et al. Artificial light at night affects emergence from a refuge and space use in guppies. Scientific Reports 8, 14131 (2018).
31. Jechow, A. et al. Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. Journal of Quantitative Spectroscopy and Radiative Transfer 209, 212–223 (2018).
30. Hänel, A. et al. Measuring night sky brightness: methods and challenges. Journal of Quantitative Spectroscopy and Radiative Transfer 205, 278–290 (2018).
29. Jechow, A. et al. Imaging and mapping the impact of clouds on skyglow with all-sky photometry. Scientific Reports 7, 6741 (2017).
28. Kiethe, J., Heuer, A. & Jechow, A. Second-order coherence properties of amplified spontaneous emission from a high-power tapered superluminescent diode. Laser Physics Letters 14, 086201 (2017).
27. Kyba, C. C. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Science advances 3, e1701528 (2017).
26. Kurzke, H., Kiethe, J., Heuer, A. & Jechow, A. Frequency doubling of incoherent light from a superluminescent diode in a periodically poled lithium niobate waveguide crystal. Laser Physics Letters 14, 055402 (2017).
25. Jechow, A. et al. Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat, A Proof of Concept. International Journal of Sustainable Lighting 19, 15–25 (2017).
24. Jechow, A., Hölker, F., Kolláth, Z., Gessner, M. O. & Kyba, C. C. Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany. Journal of Quantitative Spectroscopy and Radiative Transfer 181, 24–32 (2016).
23. Niebuhr, M. et al. Mode stabilization of a laterally structured broad area diode laser using an external volume Bragg grating. Optics express 23, 12394–12400 (2015).
22. Zink, C., Niebuhr, M., Jechow, A., Heuer, A. & Menzel, R. Broad area diode laser with on-chip transverse Bragg grating stabilized in an off-axis external cavity. Optics Express 22, 14108–14113 (2014).
21. Zink, C., Werner, N., Jechow, A., Heuer, A. & Menzel, R. Multi-wavelength operation of a single broad area diode laser by spectral beam combining. IEEE Photonics Technology Letters 26, 253–256 (2013).
20. Jechow, A., Seefeldt, M., Kurzke, H., Heuer, A. & Menzel, R. Enhanced two-photon excited fluorescence from imaging agents using true thermal light. Nature Photonics 7, 973–976 (2013).
19. Jechow, A. et al. Controllable optical phase shift over one radian from a single isolated atom. Physical review letters 110, 113605 (2013).
18. Streed, E. W., Jechow, A., Norton, B. G. & Kielpinski, D. Absorption imaging of a single atom. Nature communications 3, 933 (2012).
17. Heuer, A., Sagahti, A., Jechow, A., Skoczowsky, D. & Menzel, R. Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser. Laser Physics 22, 160–164 (2012).
16. Streed, E. W., Norton, B. G., Jechow, A., Weinhold, T. J. & Kielpinski, D. Imaging of trapped ions with a microfabricated optic for quantum information processing. Physical review letters 106, 010502 (2011).
15. Norton, B., Streed, E., Petrasiunas, M., Jechow, A. & Kielpinski, D. Millikelvin spatial thermometry of trapped ions. New Journal of Physics 13, 113022 (2011).
14. Jechow, A., Streed, E., Norton, B., Petrasiunas, M. & Kielpinski, D. Wavelength-scale imaging of trapped ions using a phase Fresnel lens. Optics letters 36, 1371–1373 (2011).
13. Jechow, A., Menzel, R., Paschke, K. & Erbert, G. Blue-green light generation using high brilliance edge emitting diode lasers. Laser & Photonics Reviews 4, 633–655 (2010).
12. Skoczowsky, D., Jechow, A., Menzel, R., Paschke, K. & Erbert, G. Efficient second-harmonic generation using a semiconductor tapered amplifier in a coupled ring-resonator geometry. Optics letters 35, 232–234 (2010).
11. Skoczowsky, D. et al. Quasi-monolithic ring resonator for efficient frequency doubling of an external cavity diode laser. Applied Physics B 98, 751–757 (2010).
10. Jechow, A. et al. Stripe-array diode-laser in an off-axis external cavity: Theory and experiment. Optics Express 17, 19599–19604 (2009).
9. Jechow, A., Raab, V. & Menzel, R. Tunable 6.8 W narrow bandwidth emission from a single-stripe continuous-wave broad-area laser diode in a simple external cavity. Applied optics 47, 1447–1450 (2008).
8. Jechow, A., Heuer, A. & Menzel, R. High brightness, tunable biphoton source at 976 nm for quantum spectroscopy. Optics express 16, 13439–13449 (2008).
7. Jechow, A., Schedel, M., Stry, S., Sacher, J. & Menzel, R. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm. Optics letters 32, 3035–3037 (2007).
6. Jechow, A., Raab, V. & Menzel, R. Tunable diffraction-limited light at 488 nm by single-pass frequency doubling of a broad area diode laser. Applied optics 46, 943–946 (2007).
5. Jechow, A. et al. 1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz. Optics Communications 277, 161–165 (2007).
4. Jechow, A., Skoczowsky, D. & Menzel, R. 100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal. Optics Express 15, 6976–6981 (2007).
3. Skoczowsky, D., Heuer, A., Jechow, A. & Menzel, R. Generation of 25 ps pulses by self induced mode locking of a single broad area diode laser with 300 mW average output power. Optics communications 279, 341–345 (2007).
2. Jechow, A. & Menzel, R. Efficient blue light generation by frequency doubling of a broad-area diode laser in a compact external cavity. Applied Physics B 89, 507–511 (2007).
1. Jechow, A., Raab, V. & Menzel, R. High cw power using an external cavity for spectral beam combining of diode laser-bar emission. Applied optics 45, 3545–3547 (2006).