(Dept. 3) Plankton and Microbial Ecology
Research in the Department of Plankton and Microbial Ecology on the shores of Lake Stechlin centres on impacts of global environmental change on inland waters. Consequences on the biodiversity and functioning of plankton communities in lakes receive particular attention. This includes investigations into the dynamics, activities and interactions of bacteria, phytoplankton, zooplankton and fungi. Field experiments, especially in a large outdoor facility dubbed the LakeLab in Lake Stechlin, are a hallmark of research in the department. Other essential elements are the analysis of long-term data, laboratory experiments and the development of ecological models and new methods to analyse plankton communities. We use the knowledge gained in theses studies to devise concepts and methods that foster the protection and sustainable management of inland waters in the face of ongoing environmental change.
Research groups
Department members
Selected publications
Tapping into fungal potential: Biodegradation of plastic and rubber by potent Fungi
The presence of plastics in our environment is an increasing burden on nature and our health. The authors have now identified fungi isolated from freshwater ecosystems that can efficiently degrade plastic polymers made of polyurethane, polyethylene and tyre rubber. Contrary to previous assumptions, no pre-treatment of the plastics was necessary.
Unleashing the power of remote sensing data in aquatic research: Guidelines for optimal utilization
The study aimed to elucidate the tradeoffs for the utilization of remote sensing data in limnological studies with an example based on the estimation of chlorophyll a due to its importance as a water quality indicator. Assessing atmospheric correction and product limitations ensures alignment with the limnological study.
Community stability of free-living and particle-attached bacteria in a subtropical reservoir with salinity fluctuations over 3 years
The study explored changes in community stability of free-living (FL) and particle-attached (PA) bacteria in a shallow urban reservoir in subtropical China for 3 years. Salinity was the strongest environmental factor determining FL and PA bacteria communities whereby salinity increased the compositional stability, but decreased α-diversity.
The potential of historical spy-satellite imagery to support research in ecology and conservation
This study evaluated the spatial, temporal, and seasonal coverage of over one million declassified images from 4 US spy-satellite programmes, showing that this data spans nearly the entire globe and all seasons. Their use could lead to better mapping of the historical extent and structure of ecosystems and human impacts, and help reconstruct past habitats and species distributions.
Health risk ranking of antibiotic resistance genes in the Yangtze River
Aquatic microorganisms in China's Yangtze River are particularly resistant to many antibiotics, posing a high health risk.