Water and matter cycles

Rivers, lakes and wetlands connect the land to the sea, they are directly linked to groundwater, and regulate the global nutrient and carbon balance. Their sediments are also highly active zones that can extract nutrients and contaminants from the surface water. We explore these complex physical, hydrological, biological and chemical processes and interactions. We then use the knowledge gained to develop concepts for sustainable water management and for enhancing water quality. For example, we focus on the wetland rehydration of bogs, interactions between groundwater and surface water, the significance of riparian zones, and matter conversion in sediments.

Selected publications

November 2024
Water Resources Research. - 60(2024)9, Art. e2024WR037508

Attributing Urban Evapotranspiration From Eddy‐Covariance to Surface Cover: Bottom‐Up Versus Top‐Down

H. J. Jongen; S. Vulova; F. Meier; G. J. Steeneveld; F. A. Jansen; D. Tetzlaff; B. Kleinschmit; N. Haacke; A. J. Teuling

Evapotranspiration (ET) is an important process in the water cycle that can help reduce heat stress in cities. However, it is dependent on surface cover. The study provides insights that can inform urban planning and water management decisions, including improving the living environment of city dwellers.

September 2024
Functional Ecology. - 38(2024)7, 1523-1536

Multiple-stressor effects on leaf litter decomposition in freshwater ecosystems: A meta-analysis

Graciela Medina Madariaga; Verónica Ferreira; Roshni Arora; India Mansour; Gwendoline M. David; Sonja C. Jähnig; Fengzhi He

By using a meta analytical technique, the authors investigated the effect of multiple-stressors on leaf litter decomposition in freshwaters. The overall interaction between multiple stressors was antagonistic and the magnitude and direction of multiple-stressor interactions depends on factors such as the involvement of macroinvertebrates, habitat type and available resources.

September 2024
Journal of Hydrology. - 643(2024), Art. 131914

Electrical conductivity fluctuations as a tracer to determine time-dependent transport characteristics in hyporheic sediments

Jonas L. Schaper; Olaf A. Cirpka; Joerg Lewandowski; Christiane Zarfl

The paper presents a modeling approach to estimate time-varying travel times from the stream water to the streambed. The modeling is based on fluctuations in electrical conductivity in the surface water and in the porewater. Given the high temporal dynamics of transport in streambed sediments, the model will be a valuable tool for the assessment of reactive transport in streambed sediments.

Nature_Water
September 2024
Nature Water. - XX(2024)X, XX-XX

Ecohydrological resilience and the landscape water storage continuum in droughts

Doerthe Tetzlaff; Hjalmar Laudon; Shuxin Luo; Chris Soulsby

A better understanding of water storage dynamics at medium scales, i.e. areas between 10 and 100 square kilometres, could help to better predict and ensure the availability of water resources, even in times of climate change. To this end, the researchers here synthesised findings from several long-term studies and introduced the concept of ecohydrological resilience. 

September 2024
Water Research. - 262(2024), Art. 122118

Linking terrestrial biogeochemical processes and water ages to catchment water quality: A new Damköhler analysis based on coupled modeling of isotope tracers and nitrate dynamics

Xiaoqiang Yang; Doerthe Tetzlaff; Junliang Jin; Qiongfang Li; Dietrich Borchardt; Chris Soulsby

Catchment-scale nitrate dynamics involve complex coupling of hydrological transport and biogeochemical transformations, imposing challenges for source control of diffuse pollution. Coupled modeling of isotope tracers and nitrate dynamics revealed that upland arable areas impose pollution risks under drought while the river-connected lowlands are processing hotspots and more resilient to drought. 

Related Projects

Contact persons
Mark Gessner
Sabine Hilt
Department(s)
(Dept. 1) Ecohydrology and Biogeochemistry
(Dept. 2) Community and Ecosystem Ecology
(Dept. 3) Plankton and Microbial Ecology
Start
07/2015
End
06/2024
Topic

Related Downloads

MONERIS

City, country, river: modelling and managing nutrient pollution in lakes and rivers

Experts at IGB

Tobias Goldhammer

Programme Area Speaker
Research group
Nutrient Cycles and Chemical Analytics

Michael Hupfer

Research Group Leader
Research group
Biogeochemical Processes in Sediments and Lake Management

Jörg Lewandowski

Research Group Leader
Research group
Ground Water-Surface Water Interactions

Markus Venohr

Programme Area Speaker
Research group
River System Modelling