(Dept. 1) Ecohydrology and Biogeochemistry

The interactions within and between green water (in terrestrial systems) and blue water (lakes, rivers, and subsurface aquifers) affect in complex ways the habitats for organisms and the reactive transport of abiotic components. Aquatic and terrestrial systems are coupled at multiple spatio-temporal scales. The overall goal of the Department of Ecohydrology and Biogeochemistry is to understand the ecohydrological and biogeochemical processes of these connected land- and waterscapes in natural, rural and urban environments. Therefore, our research projects focus on the following core topics:

  • Interactions of  landscape-freshwater ecosystems
  • Physical and biogeochemical drivers under global change
  • Water security in disturbed and urban systems

In our research, we integrate different modelling approaches with data collected in field studies, in large-scale manipulation studies,  by long-term monitoring and in laboratory experiments. We study ecohydrological and biogeochemical processes using a variety of tracer techniques, particularly stable isotopes, and by measuring naturally dissolved solutes, conservative geogenic ions, trace organic matter, and nutrients. In doing so, we combine basic research with application aspects and aim to record and model the effects of climate and land use changes. With its laboratory infrastructure and expertise in the fields of inorganic and organic analysis as well as isotope measurement, the department performs a central function for the entire institute. To achieve our research goal, we combine our professional expertise from the research disciplines of hydrology, geochemistry, aquatic physics, ecology, environmental engineering, and geography.

Research groups

Georgiy Kirillin
Stephanie Spahr
Alexander Sukhodolov
Dörthe Tetzlaff
Markus Venohr

Department members

Selected publications

February 2025
Hydrological Processes. - 39(2024)2, Art. e70077

Seasonal and Inter-Annual Dynamics in Water Quality and Stream Metabolism in a Beaver-Impacted Drought-Sensitive Lowland Catchment

Famin Wang; Doerthe Tetzlaff; Christian Birkel; Jonas Freymueller; Songjun Wu; Sylvia Jordan; Chris Soulsby

The authors monitored  water quality parameters over 3 years in an intermittent stream network in the eutrophic, lowland Demnitzer Millcreek catchment, Germany. They focused on the effects of wetland systems impacted by beaver dams on the diurnal, seasonal and inter-annual variation in water quality dynamics and modelled stream metabolism. 

January 2025
Journal of Hydrology. - 653(2025), Art. 132708

Hydrological connectivity and biogeochemical dynamics in the function and management of the lower Oder floodplain

Hanwu Zheng; Doerthe Tetzlaff; Christian Birkel; Jana Chmieleski; Jean-Christophe Comte; Jonas Freymueller; Tobias Goldhammer; Axel Schmidt; Ellen Wohl; Chris Soulsby

The authors investigated the role of hydrological connectivity dynamics on biogeochemistry in the Oder river-floodplain system through a multi-proxy approach to quantify water sources and ages, evaporation losses, water quality, surface water connectivity via remote sensing and sub-surface connectivity via geophysical surveys. This is important to sustain vulnerable wetlands. 

January 2025
Water Resources Research. - 61(2025)1, Art. e2024WR037656

Revising Common Approaches for Calibration: Insights From a 1-D Tracer-Aided Hydrological Model With High-Dimensional Parameters and Objectives

Songjun Wu; Doerthe Tetzlaff; Chris Soulsby

Dimensionality of parameters and objectives has been increasing due to the accelerating development of models and monitoring networks resulting in major challenges for model calibration. The study highlights limitations of high-dimensional calibration approaches, the role of data uncertainty and deficiencies in model structure of process-based ecohydrological models.

January 2025
Science of The Total Environment. - 959(2025), Art. 178242

Demystifying the art of isotope-enabled hydrological and climate modelling

Christian Birkel; Jodie Miller; Andrew Watson; Duc Anh Trinh; Ana Maria Durán-Quesada; Ricardo Sánchez-Murillo; Chris Soulsby; Stefan Terzer-Wassmuth; Dörthe Tetzlaff; Stefan Uhlenbrook; Yuliya Vystavna; Kei Yoshimura

Stable water isotopes are well known tracers of the hydrological cycle producing critical climate science but they are not explicitly included in influential climate reports except for paleoclimate reconstructions. The authors argue that it is time to incorporate isotopes and isotope-enabled modelling into mainstream hydroclimatic forecasting to improve climate change predictions and evidence.

January 2025
WIREs Water. - 12(2025)1, Art. e70001

A Holistic Catchment-Scale Framework to Guide Flood and Drought Mitigation Towards Improved Biodiversity Conservation and Human Wellbeing

Phillip J. Haubrock; Rachel Stubbington; Nicola Fohrer; Henner Hollert; Sonja C. Jähnig; Bruno Merz; Claudia Pahl-Wostl; Holger Schüttrumpf; Doerthe Tetzlaff; Karsten Wesche; Klement Tockner; Peter Haase

The authors suggest to combine conventional civil engineering methods, nature-based solutions, and biodiversity conservation actions at catchment-scale to leverage flood and drought mitigation and cater to improved biodiversity conservation and human wellbeing. We outline the needs in terms of legislation structure, adequate funding and governance structures to make this happen.