Selected publications

Scientific highlights of IGB
Filter for
Please find all scientific publications of IGB under > scientific publications
For more detailed information please refer to our > library catalogue
41 - 50 of 101 publications
  • Department:(Dept. 1) Ecohydrology and Biogeochemistry
November 2022
Science of the Total Environment. - 854(2023), Art. 158670

Towards the outwelling hypothesis in a Patagonian estuary: first support from lipid markers and bacterial communities

Germán A. Kopprio; Ana Martínez; Anna Fricke; Michael Hupfer; Rubén J. Lara; Martin Graeve; Astrid Gärdes

Fatty acid markers, stable isotopes of C and N, and bacterial communities were investigated in a mesotidal estuary of the Patagonia to assess the Odum’s outwelling hypothesis. Rhodobacterales were likely early colonizers of the outwelled organic matter and the exportation of nutrients and organisms and their essential fatty acids from the wetland was inferred, supporting the findings of Odum.

November 2022
Journal of Hydrology. - 614(2022)Part A, Art. 128462

Evaluating satellite-derived soil moisture data for improving the internal consistency of process-based ecohydrological modelling

Doris Duethmann; Aaron Smith; Chris Soulsby; Lukas Kleine; Wolfgang Wagner; Sebastian Hahn; Dörthe Tetzlaff

The authors investigated whether satellite-derived soil moisture products of high spatio-temporal resolution are useful for calibrating a process-based ecohydrological model. Including soil moisture data for calibration improved process-consistency of the model. At this scale, the temporal dynamics of the satellite-derived data were more helpful for model calibration than the spatial patterns.

 

October 2022
Geophysical Research Letters. - 49(2022)20, Art. e2022GL098917

The role of boundary mixing for diapycnal oxygen fluxes in a stratified marine system

P. Holtermann; O. Pinner; R. Schwefel , L. Umlauf

The research team investigated the vertical oxygen flux through the halocline in the Baltic Sea using high-resolution temperature and oxygen profiles during different seasons. Oxygen transport showed a strong seasonality and was higher in autumn compared to summer and winter. The shoreline regions were responsible for >80% of the total oxygen transport through the halocline.

October 2022
Science of the Total Environment. - 854(2023), Art. 158663

Formation of vivianite in digested sludge and its controlling factors in municipal wastewater treatment

Lena Heinrich; Peter Schmieder; Matthias Barjenbruch; Michael Hupfer

Phosphorus as scare raw material can be recovered from municipal wastewater treatment as iron phosphate mineral vivianite. Vivianite formation increased with higher iron and lower sulphur content. The study suggests that the use of sulphur-free precipitants for chemical P elimination may enhance vivianite formation. The new insights are also of high relevance for the research on aquatic sediments.

September 2022
Water Research. - 224(2022), Art. 119056

Fate of trace organic compounds in the hyporheic zone: influence of microbial metabolism

Anja Höhne; Birgit M. Müller; Hanna Schulz; Rebwar Dara; Malte Posselt; Jörg Lewandowski; James L. McCallum

The authors investigated the influence of microbial processes on the fate of trace organic compounds in stream sediments. The study demonstrates the usefulness of the fluorescent tracer system resazurin-resorufin for determining microbial metabolism and disentangling specific reactive properties and ultimately their influence on the fate of contaminants in natural hyporheic zones.

Hydrological Processes 36
September 2022
Hydrological Processes. - 36(2022)9, Art. e14686

Spatial and temporal dynamics of water isotopes in the riverine-marine mixing zone along the German Baltic Sea coast

Bernhard Aichner; Timo Rittweg; Rhena Schumann; Sven Dahlke; Svend Duggen; David Dubbert

The spatial and temporal variability of stable water isotopes were investigated in the Schlei and in the Baltic Sea boddens. The data improve the understanding of hydrological processes behind those dynamics. Further they will be a helpful contribution to multiple IGB projects, e.g. in context of migration studies of pike and analysis of biochemical processes in macrophytes

September 2022
Water Resources Research. - 58(2022)3, Art. e2021WR029771

Organizational principles of hyporheic exchange flow and biogeochemical cycling in river networks across scales

Stefan Krause; Benjamin W. Abbott; Viktor Baranov; Susana Bernal; Phillip Blaen; Thibault Datry; Jennifer Drummond; Jan H. Fleckenstein; Jesus Gomez Velez; David M. Hannah; Julia L.A. Knapp; Marie Kurz; Jörg Lewandowski; Eugènia Martí; Clara Mendoza-Lera; Alexander Milner; Aaron Packman; Gilles Pinay; Adam S. Ward; Jay P. Zarnetzke

Understanding organizational principles of hyporheic exchange flow and biogeochemical cycling in landscapes is key for generalizing process knowledge.

July 2022
Science of the Total Environment. - 843(2022), Art. 156879

The potential of large floodplains to remove nitrate in river basins: the Danube case

Martin Tschikof; Andreas Gericke; Markus Venohr; Gabriele Weigelhofer; Elisabeth Bondar-Kunze; Ute Susanne Kadene; Thomas Hein

Based on the modelling of nutrient fluxes in the Danube River Basin, the authors estimated the (potential) contribution of the large floodplains to remove nitrate from the Danube and major tributaries. The active floodplains retain 33000 tons per year, or 6.5% of the total nitrogen emissions, which can be increased by 5000 tons if floodplains and water bodies are reconnected.

June 2022
Proceedings of the National Academy of Sciences of the United States of America. - 119(2022)26, Art. e2102466119

A hybrid empirical and parametric approach for managing ecosystem complexity: water quality in Lake Geneva under nonstationary futures

Ethan R. Deyle; Damien Bouffard; Victor Frossard; Robert Schwefel; John Melack; George Sugihara

A hybrid model which combines a classical 1D lake model with data-driven machine learning was used to predict changes in deepwater oxygen concentrations under varying climatic conditions and nutrient concentrations. The model predicted deepwater oxygen concentrations of Lake Geneva more precisely than a classical approach. Increasing air temperatures have similar effects as phosphorus inputs.

Share page