Revising Common Approaches for Calibration: Insights From a 1-D Tracer-Aided Hydrological Model With High-Dimensional Parameters and Objectives
Dimensionality of parameters and objectives has been increasing due to the accelerating development of models and monitoring networks resulting in major challenges for model calibration. The study highlights limitations of high-dimensional calibration approaches, the role of data uncertainty and deficiencies in model structure of process-based ecohydrological models.
Demystifying the art of isotope-enabled hydrological and climate modelling
Stable water isotopes are well known tracers of the hydrological cycle producing critical climate science but they are not explicitly included in influential climate reports except for paleoclimate reconstructions. The authors argue that it is time to incorporate isotopes and isotope-enabled modelling into mainstream hydroclimatic forecasting to improve climate change predictions and evidence.
A Holistic Catchment-Scale Framework to Guide Flood and Drought Mitigation Towards Improved Biodiversity Conservation and Human Wellbeing
Identifying Major Factors for Success and Failure of Conservation Programs in Europe
Legacy effects of an invasive legume more strongly impact bacterial than plant communities in a Mediterranean-type ecosystem
Evaluating the readiness for river barrier removal: A scoping review under the EU nature restoration law
A global systematic review of the cultural ecosystem services provided by wetlands
A desiccating saline lake bed is a significant source of anthropogenic greenhouse gas emissions
Desiccating salt lakes are an underappreciated source of greenhouse gases that could become even more relevant as a result of climate change. This study, examining greenhouse gas emissions from the drying lake bed of Great Salt Lake, Utah, calculates that 4.1 million tons of carbon dioxide and other greenhouse gases were released in 2020.
Hydrological connectivity drives intra- and inter-annual variation in water quality in an intermittent stream network in a mixed land use catchment under drought
The study investigated spatio-temporal variation of hydrological connectivity and linked water quality in an intermittent mixed land use, lowland catchment in NE Germany. In recent years streamflow became more intermittent with major implications for water quality. Spatial variation of water quality is related to soils and landuse. An extensive wetland area acted as a major ecohydrological buffer.